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We report the generation of directed self-propelled motion of a droplet of aniline oil with a velocity on the
order of centimeters per second on an aqueous phase. It is found that, depending on the initial conditions, the
droplet shows either circular or beeline motion in a circular Petri dish. The motion of a droplet depends on
volume of the droplet and concentration of solution. The velocity decreases when volume of the droplet and
concentration of solution increase. Such unique motion is discussed in terms of Marangoni-driven spreading
under chemical nonequilibrium. The simulation reproduces the mode of motion in a circular Petri dish.
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I. INTRODUCTION

Self-propelled motion is ubiquitous in a biological world.
Recently, there was an intense scientific interest in self-
propelled motion, such as macroscopic chemical Marangoni
effect �1–4� and microscopic chemical powered transporter
�5�. This is not only because of the purpose of getting insight
into the mechanism of biolocomotion but of the practical
application of self-motion in robot design, Lab-on-a-chip
technique, and microfluidic systems. The general mechanism
of emergence of vectorial self-motion is the broken symme-
try at front and rear. Particularly, Marangoni effect induces
net slide of a droplet when wetting defect is formed �6�.
Marangoni-driven motion was discussed intensively in pre-
vious publications �7–9�. An imbalance of surface tension
pushes the droplet forward. Although spontaneous agitation
at the interface induced by chemical Marangoni effect has
been studied for more than a century, most reports have
shown that the spontaneous motion is not regular with regard
to both spatial and temporal changes. Recently, a certain kind
of regular motion has been reported for an alcohol droplet
�10�. However, the mechanism of such spontaneous motion
has not been fully unraveled. In the present paper, we report
a unique mode of steady motion of a self-propelled droplet
induced by Marangoni-driven spreading.

II. EXPERIMENT

The experiment was performed using aniline oil ��aniline
=1.020�0.002 g /ml at 20 °C, 99.0%, Wako, Japan�. Aque-
ous solutions containing various amounts of aniline were
prepared. The aqueous solution was transferred to a circular
glass Petri dish �diameter is 12 cm� and a rectangular vessel
�10�10 cm2�. The depth of the aqueous solution was from
several centimeters to over 10 cm. A drop of aniline was
placed on the air-solution interface through a pipette. The
self-agitation of the droplet was monitored with a video cam-
era and examined with image-analysis software. The mea-
surements were carried out at room temperature �18�2 °C�.

III. RESULTS

Figure 1 exemplifies the self-propelled motion of an
aniline droplet on an aqueous solution. After being deposited
on the shallow aqueous solution, the droplet quickly acceler-
ated and achieved steady motion. When the volume of the
droplet is large enough �for example, hundreds of microliters
as in the case of Fig. 1�, the droplet moves continuously for
hours. As shown in Fig. 1�a�, a single droplet undergoes two
different kinds of regular motion in a circular Petri dish de-
pending on initial conditions �direction of motion and initial
position�: beeline motion and circular motion. The wall is
apparently repulsive for the droplet as shown in Fig. 1. When
we deposit a droplet near the wall and induce the droplet
along the wall gently, the droplet will move circularly along
the circular wall, keeping a certain distance from the wall.
The distance between the center of the droplet and the circu-
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FIG. 1. �Color online� Self-propelled motion of droplets. �a�
Spatiotemporal evolution of beeline motion �left� and circular mo-
tion �right� in a circular Petri dish. The droplets have volumes of
975 �left� and 325 �l �right�, respectively. �b� Spatiotemporal im-
age of beeline motion between two parallel walls in a square vessel.
The concentration of the solution in �a� and �b� is 2.8 vol %. Scale
bars are 2 cm. As for detail motion, see movie 1 for circular motion
and movie 2 for beeline motion �Ref. �11��.
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lar wall is almost constant during the circular motion. How-
ever, when the droplet is deposited far from the wall, the
droplet will undergo beeline motion. The interaction between
a droplet and the wall is subtle. A droplet in beeline motion
prefers to switch to circular motion in a long term after
bumps with the wall. Figure 1�b� shows the spatiotemporal
evolution of beeline motion between two parallel walls in a
square vessel. The droplet undergoes to-and-fro motion be-
tween two walls. The wall repels the droplet, which deceler-
ates when it approaches the wall. The repulsive force from
the wall, as evaluated from the experimental tracking of the
velocity of the droplet approaching the wall, is on the order
of micro-Newtons. The droplet moves at a velocity of centi-
meters per second. The average velocity depends on the vol-
ume of the droplet and the concentration of the solution �Fig.
2�a��. For the droplets with same volume, the velocity lin-
early depends on the concentration of aqueous solutions �Fig.
3�.

IV. DISCUSSION

Aniline is partially miscible with water �concentration of
aniline solution c�3.6 vol % at 20 °C�. Both dissolution
through the droplet-solution interface and volatilization
through the aniline-air interface are quite slow as observed in
the experiment. The aniline spreads from the aniline droplet
to air-solution interface and loses through air-solution inter-
face mainly through volatilization and dissolution. We
checked the Marangoni flow on air-solution interface around
a droplet by putting a layer of hydrophobic powder on air-
solution interface and the internal convection in the droplet
by adding glass beads into the droplet. The Marangoni flow
induced by surface-tension gradient is weak near the contact
line of the self-propelled droplet and is not enough to supply
driving force for the movement. The internal convection is

not remarkable. On the other hand, after a minute amount of
stearyl trimethyl ammonium chloride �surfactant� was added
into aqueous solution, the motion ceased. This suggests that
a change in interfacial tension is important for the occurrence
of self-propelled motion. Thus, we will focus on the spread-
ing process and the imbalance of surface tensions between
the front and rear of a droplet. Figure 4�a� shows a schematic
representation of the physicochemical situation of an aniline
droplet on an air-solution interface. The droplet sits and
moves on the aqueous layer as spreading process proceeds
�from the experimental observation, the spreading coefficient
S=�a/s−�a/o−�o/s�0, where � is the surface tension and the
subscripts a, s, and o represent air, aqueous solution, and
aniline, respectively�. The contact line of the droplet is stable
during motion when the concentration of solution c
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FIG. 2. �Color online� Log10-log10 plot of velocity U �unit:
cm/s� and volume of droplet V �unit: �l� of motion on various
solutions. �a� Experimental results �Expt.�. Velocity is average ve-
locity. B: beeline motion in a square vessel, C: circular motion in a
circular Petri dish. The droplets move on 500 ml of solution in a
square vessel �beeline motion� and 200 ml of solution in a circular
Petri dish �circular motion�, respectively. �b� Calculated steady ve-
locity of beeline motion �Cal.�. The inset shows the interfacial ten-
sion at the droplet-solution interface ��o/s� measured by the Wil-
helmy plate method at room temperature. The lines in the figures
are fitting to the data and 	 is the slope of fitting lines.
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FIG. 3. �Color online� Velocity depending on concentration of
solution. The volumes of droplets are 100, 150, and 1000 �l, re-
spectively. The comparison of experimental data �Expt.� and calcu-
lated result �Cal.� is presented �V=150 �l�. The lines are the linear
fitting to the data.

(a)

Precursor film
Diffusive spreading

Dissolution

Precursor film

Air

Volatilization

Solution

Front edge

Diffusion

α α′
β β′

Aniline

front
s/aγ

o/aγ
o/aγ

s/oγ s/oγ

rear
s/aγ

Air

Motion
Rear side Front side

Solution

(f)

Rear Front

Droplet

(b) (c)

(d) (e)

h

2r

FIG. 4. �Color online� Scenario of a self-propelled droplet on an
air-solution interface. �a� Precursor film model of a droplet from
which aniline spreads on an aqueous solution. �b� Side view of a
droplet in beeline motion �front or back view�. �c� and �d� Side
views of the lower �c� and flat upper �d� parts of droplets in beeline
motion on 2.8 vol % solution. �e� Side view of reference plane
perpendicular to the direction of motion. Scale bars are 1 cm. �f�
Drawing of fluid flow �dashed line� and Marangoni flow �solid line�
near a droplet in motion. The Reynolds number is from 40 to 200.
The fluid flow is not only layer flow but “Karman vortex street” on
the rear. The Marangoni flow is distorted by fluid flow.
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2.8 vol %. Wave propagation on the contact line is seen
and motion of the droplet is complex when c�2.8 vol %.
Therefore, we focus on the regular motion when c

2.8 vol %. The droplet has a symmetric shape in beeline
motion on a uniform solution in the front or back views �Fig.
4�b��. But the difference in contact angles between the front
and the rear is finite �Fig. 4�c��. The wetting behavior of a
liquid on a substrate is characterized by spreading coefficient
S and Hamaker constant A �9,12,13�. The positive spreading
coefficient �S�0� and the positive Hamaker constant �Aaos
�0 �14�� lead to the pseudopartial wetting of aniline on the
aqueous substrate �13�. In the case of pseudopartial wetting,
a macroscopic droplet with enough supply of liquid will co-
exist with an equilibrium thin film covering all over the sub-
strate. However, in our experimental system, an equilibrium
film cannot be formed because of dissolution and volatiliza-
tion at the air-solution interface. There is a precursor film
with finite length in the vicinity of the contact line and the
spreading process proceeds through this precursor film �Fig.
4�a�� �2�. The length of the precursor film depends on the rate
of volatilization and dissolution on air-solution interface. At
the front edge of the precursor film, a monolayer of aniline
molecules spreads diffusively toward an area with higher
surface energy. The motion of a droplet persists for hours
until the droplet consumes all its mass at the rate of a mono-
layer.

When the contact line is stable, the force balances on the
contact line per unit length of the front and the rear are
�a/o cos ��+�o/s cos ��=�a/s

front and �a/o cos �+�o/s cos �
=�a/s

rear, where contact angles �, �, ��, and �� are illustrated
in Fig. 4�a�. The values of � and �� are small, as illustrated
in Fig. 4�d�. Therefore, we obtain cos �=cos ���1. In ad-
dition, the relation of ���� is obtained �Fig. 4�c��. Accord-
ing to the relations of force balance on the contact line men-
tioned above, we have �a/s

rear��a/s
front. This indicates that the

surface density of molecules at the rear should be higher than
that at the front �aniline is a surface-active reagent� and thus
a larger amount of aniline molecules spread toward the rear
during the motion of the droplet. Using this model �Fig.
4�a��, the driving force per unit length is fD=�o/s�cos ��
−cos ��, where deformation of the air-solution interface is
omitted. The driving force is characterized by geometric
asymmetry. It has been shown that geometric asymmetry has
the possibility to induce driving force for self-propelled mo-
tion of a solid camphor scraping �15�. However, a liquid
droplet cannot sustain the difference of contact angles unless
surface tensions at the rear and the front are different. The
geometric asymmetry of the droplet actually is caused by a
change in surface tension. When a droplet is static in a hole
with pretty much the same size of the droplet, Marangoni
vortexes were found near contact line of the droplet �see
movie 3 �11��. Marangoni flow was induced by surface-
tension gradient in the vicinity of contact line. When the
balance of surface tension was broken by perturbation, the
droplet moves toward a direction and deforms at the rear. On
an isotropic environment, the Marangoni flow on air-solution
interface is principally symmetric around a static droplet.
However, in the regular motion, the fluid flow of solution,
which passes the droplet, breaks the symmetry of
Marangoni-driven spreading from the droplet. We attribute

the imbalance of surface tension to the effect of fluid flow of
solution passing the droplet. As mentioned above, the pertur-
bation initiates the asymmetry of surface tension around a
droplet. The imbalance of surface tension causes the motion
of the droplet. The motion induces the fluid flow of solution
passing the droplet. The fluid flow of solution is drawn in
Fig. 4�f�. The fluid flow contorts the way of Maragoni flow,
which contains the surface-active molecules, as shown in
Fig. 4�f�. The motion itself breaks the symmetry of
Maragoni-driven spreading around the droplet. The Mara-
goni flow points to the rear of the droplet. The aniline mol-
ecules spreading from lateral are taken to the rear by fluid
flow of the solution. The density of surface-active molecules
is higher at the rear while the droplet meets the fresh surface
of solution at the front. The asymmetric spreading of aniline
molecules sustains the difference of surface tension at the
rear and the front. The imbalance of surface tension is char-
acterized by the difference of contact angles at the rear and
the front. The difference of surface tensions at the rear and
front supplies the driving force for self-propelled motion. In
beeline motion, when viscous drag Fvd acting on a droplet
balances the driving force FD from surface-tension difference
at front and rear, the droplet moves steadily. We deduced
steady velocity of beeline motion by the balance of viscous
drag and driving force Fvd=FD �see Appendix�. The pre-
dicted velocity is shown in Fig. 2�b� and agrees well with
experimental measurements in Fig. 2�a�.

Our experiment indicates that a wall repels a droplet. The
repulsive force includes two parts. On the one hand, the wall
impedes further diffusive spreading of surface-active mol-
ecules and this leads to a lower surface tension near the wall
�wall effect�. On the other hand, the meniscus formed near
the wall induces a repulsive net force. In circular motion,
wall effect and meniscus effect supply centripetal force. To
get insight into the wall effect, let us compare the repulsive
net force from meniscus effect with centripetal force in cir-
cular motion. As mentioned before, a droplet keeps a certain
distance from a wall when it moves circularly in a circular
Petri dish. The space between the droplet and the wall �Figs.
5�a� and 5�b��, x, is in the range of 0.6–1.2 cm in circular
motion when 2.8 vol %c3.3 vol % in a circular Petri
dish �detail not shown�. Centripetal force fc=�anilineVU2 /R0
�V is volume of a droplet and R0=5.0 cm is radius of circu-
lar motion� is plotted in Fig. 5�c� according to the experi-
mental data of velocities U in a circular Petri dish �Fig. 2�a��.
As for the meniscus effect, the net force per unit length due
to the deformation of meniscus near the wall can be ex-
pressed as fm=�a/s−�a/s� cos �, where �a/s� and � are shown in
Fig. 5�a�. Assume total wetting of the solution on the glass
wall. cos � is determined by the shape of the meniscus �9�:
�x−x0� /�−1=cosh−1��2 / �1−cos ��1/2�− �1+cos ��1/2 ��=90°
when x=0, x0 is constant�, where �−1=��a/s /�g is the
capillary length and g is the gravity acceleration ��a/s
=49 mN /m from experimental measurement when c
=2.8 vol %, and thus �−1=0.21 cm�. By setting �a/s� =�a/s
for simplicity, the net force per centimeter due to meniscus
effect is shown in Fig. 5�d�. When x�0.6 cm, the net force
per centimeter due to meniscus effect is less than 0.5 �N
when c=2.8 vol %. The net force from the meniscus effect
is not enough �when x�0.6 cm� to supply centripetal force
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in circular motion �diameter of droplets is less than 2 cm� as
shown by comparison of the results in Figs. 5�c� and 5�d�.
This indicates that the wall effect, which results in a lower
surface tension near the wall, plays a role in centripetal force
of the circular motion. But as shown in Fig. 5�d�, net force
due to meniscus effect will increase fast when x decreases at
x�0.6 cm. Thus, when a droplet approaches the wall, it will
be repelled by meniscus effect. The repulsion from the wall
suggests a way to control the motion of a droplet. We put a
gap on the path of motion. The repulsive force from the glass
wall deforms the droplet and then the droplet passes through
the gap narrower than the normal size of the droplet �Fig. 6�.
The aniline droplet does not prefer to attach on the glass
wall. The imbalance of surface tension at rear and front
pushes the droplet forward in the gap.

V. NUMERICAL SIMULATION

We now discuss the mechanism of mode selection in a
circular Petri dish as shown in Fig. 1�a�. The active motion is
driven by dissipative process. A droplet prefers to maintain a
steady velocity U. The net force on a droplet is related to the
balance between the viscous drag and the difference of sur-
face tensions at rear and front. When the velocity of a droplet
is smaller than that of the steady state, the net force domi-
nated by the imbalance of surface tensions at rear and front
will accelerate the droplet. But when the velocity of a droplet
is larger than that of the steady state, the net force dominated
by the viscous drag will decelerate the droplet. The motion
of our droplet is similar to that of a biological object or an
active particle with active friction. Langevin dynamics has
been used to describe motion of Brownian particle with en-
ergy depot �18�. In our system, the persistent Marangoni-
driven spreading from droplet to aqueous phase supplies ki-
netic energy for self-propelled motion. Stochastic force is
neglected. Including active friction from Marangoni-driven
spreading and viscous drag, we write the governing equation
as Langevin dynamics without stochastic term:

dU� �

dt
= − ���U� ��2�U� � − �� . �1�

According to the expression of viscous drag, we write the

velocity-dependent active friction coefficient as ���U� ��2�
=���U� ��2−U2�. �, U� �, �U� ��, U, and � are the effective poten-
tial from the repulsion of the wall, velocity, absolute velocity,
steady velocity, and a constant, respectively. Here we use

velocity-dependent friction coefficient ���U� ��2� to character-
ize the balance of driving force and viscous drag. The posi-

tive or negative value of ���U� ��2� indicates the process of
deceleration or acceleration. The active friction in Eq. �1�
would like to maintain steady velocity of motion �19�. This
corresponds to the motion of our system. To determine the
effective potential from the wall, we tracked the motion of a
droplet between two parallel walls in a rectangular vessel as
shown in Fig. 1�b�. The net force was estimated according to
the acceleration of the droplet �Fig. 7�. We constructed a
parabolic effective potential � from the wall according to the
spatial evolution of the net force in Fig. 7. The effective
potential includes wall and meniscus effects. We choose � as

��a� = �− 9� �0  a  a0� ,

��a2 − 6a� a � a0,
	 �2�

where a= �x2+y2�1/2 is the radial distance to the center of the
circular Petri dish in a xy orthogonal coordinate system �Fig.
8�, a0=3, and � is an adjustable constant. The constants 2�
and a0 characterize the gradient of force from wall and scope
where the effect of wall works. The value of a0, which de-
pends on radius of Petri dish, does not have much influence
on results because we do not fix the position of wall in this
model. Steady velocity is determined by concentration of
solution and size of a droplet. Figure 8 shows the numerical
results for the motion after a minute perturbation under spe-
cific initial conditions in a circular Petri dish. At the begin-
ning, the droplet accelerates quickly as that in the experi-
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FIG. 5. �Color online� Interaction of the droplet with the wall.
�a� A schematic of a droplet near a wall �side view�. � is the angle
between tangent of meniscus and horizontal. �b� Top view of a
droplet moving near a wall. Scale bar is 2 cm. �c� Calculated cen-
tripetal force of circular motion in a circular Petri dish. �d� Net
force due to meniscus effect. Demonstrated is the net force per
centimeter from the meniscus effect when c=2.8 vol %.
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FIG. 6. A droplet passes through a narrow gap. Dashed lines on
the droplet show shape of the droplet. Scale bar is 2 cm. As for the
detail of the motion, see the movies 4 and 5 �Ref. �11��.
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ment. The wall reflects the droplet when the droplet
approaches the wall. The mode of motion depends on the
initial position and the droplet tends to approach its steady
state as shown by the time evolution of the velocity in Fig. 8.
We found circular mode of motion when a droplet has an
initial velocity in Fig. 9. In the simulation, steady motion is
not always circular motion as shown in Figs. 8 and 9. The
initial condition determines the subsequent mode of motion.
From different initial positions, droplets undergo different
modes of motion. The behavior agrees with the experimental
observation �Fig. 10�. But, in the experimental case, the free-
dom of rotation of the droplet subtly counteracts the repul-
sive effect from the wall and leads to smoother motion. A
droplet prefers to switch from noncircular motion to circular
motion through repulsive potential and then be self-confined
near the wall as shown in Fig. 10�b�.

As shown in the experimental observation, steady velocity
depends on the size of a droplet and the concentration of
solution �Fig. 2�a��. The size and concentration of solution
have an important effect on the motion of a droplet. For a
droplet on a solution with specific concentration, there is a

characteristic steady velocity. Figure 11 shows the numerical
results of motion with various steady velocities U under cer-
tain initial condition. When steady velocity U=0 �this corre-
sponds to the motion on a saturated solution; we set effective
potential in Eq. �2� to zero�, the viscous drag will decelerate
the droplet and the velocity comes near zero soon. For non-
zero steady velocity, the mode of motion depends on the
steady velocity, that is, droplets with different size have dif-
ferent modes of motion under same initial condition. Particu-
larly, we cannot find a circular mode of motion when steady
velocity U�0.5. It indicates that a very big droplet, which
moves slowly in a circular Petri dish, cannot undergo circular
motion as found in the experiment. But here it is important to
point out that we use the same effective potential field in
simulations of motion with various steady velocities. Actu-
ally, the effective potential field for a droplet from wall effect
should depend on the size of the droplet and concentration of
solution. Moreover, another point is that we do not fix the
position where the wall is located. In our experimental sys-
tem, wall and meniscus effects work only in a very limited
space near the wall. Thus, when the real position of the wall
is considered, a droplet with a large velocity will be reflected
by meniscus and wall itself directly while a droplet with a
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FIG. 7. �Color online� Tracking of beeline motion between two
parallel walls in Fig. 1�b�. Plotted are spatiotemporal traces of ve-
locity and net force �FNet� experienced by a droplet at the air-
solution interface �volume of droplet: 200 �l, concentration of so-
lution: 3.3 vol %� which underwent the motion in Fig. 1�b�. s is the
displacement of the droplet. We estimated the net force from the
time evolution of velocity FNet=�VdU /dt. The positions of the wall
are shown in the figure.
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FIG. 8. �Color online� Numerical results of motion after a
minute initial perturbation in a circular Petri dish. Upper: trajecto-
ries of motion, lower: time traces of velocities. A droplet chooses
different modes depending on initial position x0. Initial conditions:
y0=0, Ux

0=0, and Uy
0=0.000 000 01. Other parameters: �=1, �=3.

The arrows show the direction of motion from initial positions.
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FIG. 9. �Color online� Numerical results of motion with a non-
zero initial velocity in a circular Petri dish. Upper: trajectories of
motion, lower: time traces of velocity. A droplet chooses different
modes depending on initial position x0 shown in the figures. Initial
conditions: y0=0, Ux

0=0, and Uy
0=2. Other parameters: �=1, �=3.

The arrows show the direction of motion from initial positions.
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FIG. 10. �Color online� Experimental tracking of motion in a
circular Petri dish. �a� A typical trajectory of beeline motion. Vol-
ume of the droplet is 1000 �l. �b� Mode switching from beeline
motion to circular motion. Volume of the droplet is 400 �l. Scale
bars in the figures are 2 cm. The concentration of solution is
2.8 vol %. The arrows show the direction of motion. See movie 6
for �a� and movie 7 for �b� �Ref. �11��.
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small velocity should be sensitive to the effective potential.
This is the case we have observed in the experiment. As a
remark for the simulation, the size of the droplet and the
inertial effect are not included in the model for simulation.
Principally, the droplet is a three-dimensional object and the
net force is determined by an integral around the droplet. For
a big droplet �for example, with diameter of 1–2 cm�, the
size of the droplet and inertial effect have an important effect
on the mode of motion. The big droplet will penetrate the
effective potential field by inertial effect and bump with the
wall.

VI. CONCLUSION

In summary, we have demonstrated the unique motion of
a droplet. In contrast to previous studies, we found that drop-
lets exhibit repulsive interaction between each other and with
a wall. This indicates the possibility of controlling an indi-
vidual droplet. Also, the present system is suitable for ob-
serving swarming phenomenon in an easy-to-do experiment
with a good reproducibility. Further studies along these lines
may be promising.
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APPENDIX: PREDICTED VELOCITY

Here, we discuss the steady velocity by the balance of
viscous drag Fvd and driving force FD. Generally, the driving
force can be written as

FD = 

l

�o/s cos �cr� · n�dl ,

where l is the contact line, r� is unit vector in the direction of
�� a/s, n� is unit vector in the direction of motion, and �c is
contact angle of droplet-solution interface with air-solution
interface. We estimated Reynolds number �R� as 40�R
=U�B /��200 when concentrations of solutions are 2.8, 3.0,
and 3.3 vol %, according to Figs. 2�a� and 5�a�, where �
=1.0�10−2 cm2 /s is kinetic viscosity of water and B is arc
reference area perpendicular to the direction of motion �Fig.
4�e�� �characteristic length of the reference area is defined as
�B�: B= �1 /4h2���h2+r2�2sin−1�2rh / �h2+r2��−2rh�r2−h2��
�r is the radius of a droplet and h is the depth of a droplet
immersed in the solution�. Moreover, viscous drag acting on
a droplet is F�d=1 /2�U2CdB, where drag coefficient Cd
=24f�R� /R, and f�R�=1+0.15R0.687�0.41R0.519 when Rey-
nolds number is 40�R�200 �16�, and � is density of the
aqueous solution. The droplet moves steadily when FD
=F�d. It is difficult to estimate the distribution of the contact
angle �c on the contact line. By setting FD=2�o/sr�cos ��
−cos ��, we obtain

U =  �o/sr

2.46�B0.760�0.481�cos �� − cos ���0.658

. �A1�

Contact angles � and ��, diameters D=2r, and depths h of
droplets on various solutions are measured experimentally
and shown in Fig. 12. We use �=1.0 g /cm3 and �=1.0
�10−2 cm2 /s. The surface tension of droplet-solution inter-
face �o/s is shown as the inset of Fig. 2�b�. Equation �A1�
does not include the volume of droplets directly. The diam-
eter D, depth h, and contact angles are functions of volume
of the droplet as shown in the experimental measurements
�Fig. 12�. Getting specific dependency of parameters in
Eq. �A1� on the volume of the droplet and concentration of
solution is difficult. The contact angles are affected by
concentration of solution �Fig. 12�b��, which leads to
concentration-dependent motion of a droplet �see Fig. 3�.
Thus, we obtain the evolution of velocity as a function of

U=0 U=1 U=2 U=3

x

y

x

y

x

y

x

y

Time

Ve
lo
ci
ty

FIG. 11. �Color online� Numerical results of motion with vari-
ous steady velocities. Upper: trajectories of motion, lower: time
traces of velocities. A droplet chooses different modes depending on
steady velocity U. Initial conditions: x0=2, y0=0, Ux

0=0, and Uy
0

=3. Other parameters: �=1, �=0 for U=0 and �=3 for U�0. The
arrows show the direction of motion from initial positions.
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FIG. 12. �Color online� Geometric parameters of droplets in
beeline motion on various solutions in a square vessel measured in
experiments. �a� Depths �h� and diameters �D=2r� of droplets on
various solutions in a square vessel. �b� Contact angles ��, ��� on
front and rear.
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volume by substituting to Eq. �A1� parameters of r, h, �, and
��, which are corresponding to each value of the volume in
Fig. 12. The log-log plot of the predicted steady velocities
against the volume of droplets in beeline motion is shown in
Fig. 2�b� �17�. The velocity against concentration of solution
is plotted in Fig. 3. Comparing with experimental results, the
calculated results based on Eq. �A1� are reasonable �Fig. 3�.

The slope 	 of the fitting lines in Fig. 2�b� agrees with that in
Fig. 2�a�, suggesting that the predicted results agree well
with that of the experimental observations. The deviation of
predicted results from experimental data is mainly due to
error of estimation of viscous drag and due to a too simple
consideration of the distribution of contact angles on the con-
tact line.
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